LIQUID FLOW AROUND A SELF-PROPELLED BODY

V. L, Sennitskii UDC 532,516

Relatively little attention has been paid to the problem of flow around self-propelled bodies, This prob-
lem was discussed to a certain extent in {1], where an asymptotic expression was derived, according to which
the velocity of two-dimensional flow in the wake of a self-propelled body moving at a constant velocity in a
liquid which is at rest at infinity decreases with distance according to the s""/2 law, i.e,, much faster than in
the wake of an ordinary body experiencing the resistance offered by the liquid (in the latter case, the velocity
decreases according to the s™¥? law [2, 3]).

It was assumed in [1] that the flow is symmetric with respect to the axis along which the body moves.

In this case, the total force and the total moment of forces which the liquid exerts on the body are equal to
zero, and it is not clear what quantity possessing a physical meaning could be related to the undetermined co-
efficient A in the asymptotic expression obtained in [1]. For this reason, it is impossible to answer on the
basis of general considerations, for instance, the question of when this coefficient is not equal to zero (and,
consequently, when the asymptotic expression for the flow velocity found in {1] does not become identically
zero), It is even unclear whether A can be nonvanishing in any specific case of liquid flow around a self-pro-
pelled body.

Along with [1], one should also mention {2], where, with the aim of resolving the so-called Filon paradox,
the first few terms of an asymptotic expansion of the stream function have been found for two-dimensional flow
remote from an arbitrary cylindrical obstacle, Although the problem of liquid flow at large distances from a
self-propelled body has not been raised in [2], one can obtain from the relationships found in [2] an asymptotic
expression for the flow velocity which has the same form as the expressionproposed in [1] by considering the
case of symmetric flow and setting the resistance force equal to zero. However, the above-mentioned problem
concerning the coefficient A remains unsolved also in this case.

We consider here the two-dimensional problem of stationary flow of a viscous incompressible liquid
whose the velocity at infinity is Veo=(Ve, 0) around a cylinder with a mobile boundary (see Fig. 1). The flow
is symmetric with respect to the x axis, The mobile boundary of the body acts as the motor. The problem of
liquid motion throughout the entire flow region is solved in the approximation of small Reynolds numbers. In
particular, we have derived an asymptotic expression for the flow velocity at large distances downstream from
the body which has the same form as the expression proposed in [1].* The relationship between the coefficient
A and the conditions at the body surface has been determined,

§1, Assume that a is the cylinder radius, v is the kinematic viscosity coefficient, Re = AV v is the
Reynolds number, x =X/a, y=Y/a are dimensionless Cartesian coordinates, r =Vx? lyz is the dimensionless
polar radius, § is the polar angle, f(6) is a certain odd function, defined over the interval —zx, atl; A = 9%/627 -
%9y is the Laplacian operator, ¥ == yaV,, is the stream function, V=Vu is the liquid flow velocity, Q ==
oV./a is the vorticity, and F is the total force exerted by the liquid per unit length of the cylinder,

The dimensionless stream function of the flow under consideration constitutes the solution of the equation

p 9 N ap a . A (1.1)
Wﬁ A\I. —Z)'I—o—-y—Ali.— ﬁ;AzllJ.
it satisfies the conditions
A =0, 0, 0r = —ef for r=1; (1.2)
=0, a2yt =0 for y=0, |z| >1; (1.3)
ogloxr — 0, Moy —1 as r—oo, 1.4)

* There is a printing error in this expression in [1].
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Fig. 1

Due to flow symmetry with respect to the x axis, the projection of the vector F on the y axis vanishes,
Thus, F=(F, 0},

The function f(8) can be assigned so that, for any Re, a value of ¢ can be found such that F=0, This is
confirmed by the following example, If

f(0) = —2sin 9, e(Re) = 1,
the solution of problem (1.1)-(1.4) is given by
¢ = (r—r~1)sin0,

and the force acting per unit length of the cylinder, found from this solution, vanishes. There obviously exist
other functions f(#) such that F =0 for a suitable choice of € (Re). It is assumed throughout this article that the

points of the boundary move in such a manner that the condition F=0 is satisfied, The total moment of forces
exerted by the liquid per unit length of the cylinder is also equal to zero in the case under consideration.

The problem (1.1)-(1.4) is solved here in the approximation of small Reynolds numbers Re, using the
method of asymptotic matching of internal and external expansions [4].

§2, Assume that ¥, u, w and ¢ can be expanded in the following asmyptotic series for Re—0:

Y, 8, Re)~ ulr, 8) + gu(RJ(r, ©) + . . (2.1a)
u(r,8, Re) ~ uy(r, 6) - gy(Reyu,(r, 8) - .. ; 2.1b)
(’J(rv e’ Re) ~ (’Jo(ra e) "- gI(Re)ml(rv 6) + e (2 10)
e(Re) ~ ¢, + gy(Rede, + .. ., (2.2)

where g;(Re), gy(Re), . . . is a certain sequence of functions such that limg =0, lim g’;*‘ =0, m=1,2,.
Re->0 Re~0 m

The asymptotic expansions obtained for Re— 0 and fixed values of r and § will be referred to as internal ex-
pansions. By substituting (2.1a) and (2.2} in (1.1)-(1.4) and retaining only the dominant terms, we define the
zero-approximation problem:

Az'q;o = 0; (2.3)
Vo = 0, Oy dr = —eof for r=1; (2.4)
‘pﬂ = Oa (‘9.::\"0/6.1/‘2 = 0 for y = Oﬁ ]1’1 > 1; (2.5)
0oz — 0, dfp/dy — 1 as r— co. @.6)

Assume that the function f(8) can be expanded in a Fourier series:
F(8) = E Ffmsinm . 2.7

m==1
By solving Eq. (2.3) and using (2.4) and (2.5), we find

Yo = [aor -+ (b—Z— — a0> rot— 9_2_,3 —{by — gofy — 2¢,)r1n r} sin 0 +

(2.8)

o I
€ A mb,, b .
+ i(bm — e, — %fni)”"" —['ﬂ = )em — 5 J P — e B ey sinm ),

- m- 4

where ag, by, and ¢y, are arbitrary constants,



Having performed simple calculations, we satisfy ourselves that the total force per unit length of the
cylinder exerted by the liquid in the approximation under cons 1derat10n vanishes if, and only if, the following
expression is satisfied:

by — &ofy — 28 = 0.

The term proportional tor In r sin 8 vanishes in (2.8), as a result of which the well-known Stokes paradox {4],
characteristic for the two-dimensional problem of stationary flow of a viscous liquid around a body for small
Reynolds numbers, does not occur in our case,

By using (2.6), we finally find

= %E!fm (r-m — r*=mysinm 6, | (2.9)

where aof/z =1,

The scope of applicability of the obtained solution depends on the smallness of the inertial terms in com-
parison with the viscous terms in the liquid flow equations. After determining their values by means of (2.9),
we can show that this condition is violated if rRe~1, Therefore, along with expansions (2.1), it is necessary
to consider expansions which describe the flow in a certain external region while matching in some definite
manner [4] the internal expansions. It should be noted that condition (2.6) at infinity, which is used above,
coincides with the condition for matching the dominant term of the internal expansion of u with the dominant
term of the external expansion of u which is determined below.

§3, Assume that ¥, u, and w can be expanded in the following asymptotic series as Re—~0:

\p(f%, 0, Re) ~ fosin 0 4 hy (Re) $9 (p, 6) +.. (3.12)
u(l—%, 9, Re) ~ i = Rehy (Re)u® (p, 0) +...; (3.1b)
® (%, 0, Re) ~ Re?h; (Re) oD {p, )+ ..., (3.1c¢)
where p = V22 + 1, 7 = Rez, y = Rey; i = Vu/Vx; Iy(Re), #y(Re),. . . is a certain sequence of functions such

that

lim Rek, =0, hm h L—=0,m=1,2,.
Re-0 Re»0 "m

The asymptotic expansions obtained for Re— 0 and fixed values of p and 8 will be referred to as the external
expansions,

As a result of flow symmetry with respect to the x axis, we have

@(m = ( for i/ = 0, Jé;‘-: 0, m = 1, 2y o ; (3'2)
P =0 for y=0,2z%£0,m=1,2 ... (3.3)
For p— =, u—i, so that the following must hold:
om >0 a p—ooo,m=1,2, ... (6.4)
uw™ 0, u(;,")-—-»O; as p-—»oo,m=1,2,..., {3.5)

where u (m) and u(m) are the x and y components of the vector u‘m) respectively,

We rewrite Eq, (1.1) in terms of the variables % and y and substitute in it (3,1a); retaining the dominant
terms, we then obtain
doM/0z = Ao,
where A= 8% /ox? +82/8§2, The solution of this equation that satisfies conditions (3.2) and (3.4) is given by
3.6)

o® = e*2 ¥ A,Kp(pi2) sinm,
m=1

where Ky, is MacDonald's function, and Ay, are arbitrary constants.
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£4, We now pass to the problem of matching the internal and the external expansions. Assume that Q
is a set of functions q{r, #, Re), which, for Re—~ 0, can be expanded in the following asymptotic series:

g ~ ag(Re)ge(r, 8) — ay(Re)gqy(r, 8) .. .,
g ~ Bo(Re)g® (o, 8) - By(Re)g™(p, 6) — . ..,

where ay(Re), ®(Re), .. ., By(Re), A(Re), . . . are certain sequences of functions, such that

lim ZmtL g Jip P

=0,m =0,1,2,...
Re>0 %m Re=0 B ’ Y

Let us define the operators Iy, and Eﬁn:over the set Q:

q
Ieg = 11111( w, for fixed values of r and 8

4 Uy ?
I,a=1, q -+ Oy lim for fixed values of r and 6
m m-—1 Re—~0 m
m=1,2...;
Ep g ==P,lim L for fixed values of p and ©
o Re-0 ﬁo h
¢—Ep _a
Eg,q=1E, 9+ Ba 11;21_1.0 %, for fixed values of p and 6
=1, 2,...

The principle of asymptotic joining {4] is used below for matching the internal and external expansions. Accord-
ing to this principle, the following relationship holds for the operators Iy, and Egpyt

IamEﬁnq = Eﬁnl‘zmq' 4.1)

In practice, the matching involves a choice of internal and external variables, determination of the comparison
functions, etc. [4]. As a rule, any specific solution of these problems has the character of an assumption,
which is justified by a successful matching,

In the case under consideration, the dominant terms of the internal and external expansions of w are
matched if hy(Re) = Rel-? , where n=2, 3, 4, . is the number of the first nonvanishing coefficient f, in (2.7)
{not counting f). Assume that f, =0 and correspondmgly, hy(Re)=1, Using (2.9), we find

ERezll(') = — ERe'—’Alpu = — 280f2R929—'2 sin 20.
Considering that Egg2lyw =1 ERe2w and using (3.6), we obtain
Re“ 1@ R
A?. = "—E(lfz/!'to Ak = 0’ k= 31 47 LR

Thus,
[¢]
o) =g 2 fA 1K (9:2) — = e,fuKs (p2) cos Blsm 0. (4.2)

Now consider the Navier— Stokes equation and the equation of continuity:

@ y)u = —vp + Ay (4.3)
vu=0, {4.4)
where v = (0/dz, 9/dy); poVi s the pressure, and o is the density of the liquid.
Let us expand p in the following asymptotic series for Re—~ 0
P ~ P+ Repi(p, 6) - Reky(Re)p®(o, 0) -- . . ., (4.5)
where p« is the value of p at infinity,
By substituting (3.1b) and (4.5) in (4.3) and (4.4) and retaining only the dominant terms, we obtain
a9z = —yp® - Ay (4.6)



v-ud = 0. @.7)
Equations (4.6) and (4.7), as is known [5], have the following solutions:

Ul = 8015z + 9y/07 — %3 4.8
u = 00/dy 4 oy/07; .9)
Y = —3d/z, (4.10)
if .
AD = 0; 4.11)
ay/ox = Ay, 4.12)

By solving Egs. (4.11) and (4,12), considering that 9y/3y = o® and using (3.5), (4.2), and (4.8)-(4.10), we
obtain

oo

ud = a’p~tcos® — 3, (bncosnB = c,sinn®) p—n -~ 4.13)
n=32
. ,
~.peos 3
o2 {(Al — s,,fi) K,(0/2) - (Al —+ sofz) K; (p/2) €058 — 1 egfok, (p/2) cos 261,
ult = a’p=tsin @ 4 Z (cncosn® — by, sinn@) p—n -
n=2
L pcoso 1

+ 07" AR, (12) — 5 ek (p/2) cos B) sin 6
p = —a'p~tcos® 4 "Ez (b, cosn8 + ¢, sinnb) p—, (4.14)

where a', b',, and c'y are arbitrary constants,

By using (2.9), we find
Epel, ¥ = - ¢,/,Rep= (sin 30 — sin 0).

In correspondence with (4.1), ERely (9¥/8x) =L;ERe(8¥/6x), whence
0’ = gyfy — 245, by = — 2eof,
bn=0,m=3, 4 ...,cn=0,n=2,3, ...

§5. It can be shown [1] that
F= uVm{—R%,gsimda?—@(p—me 1y — 1) dy +g3u;(ux— 1)dz — § (u, — 12 ),
where p = ov is the viscosity of the liquid, and uy and uy are the x and y components of the vector u, respec—

tively.

The integration is performed in the flow pha.ué along a certain contour S containing the cross section of
the cylinder. We shall use a circle with the radius L. whose center is at the coordinate origin as the contour S,
Using, instead of ux, uy, w, and p, their external expansions, we find as Re -~ 0

F ~pVoRe[§ oz — § (p0 +uP)dg] 4 ... for Re—0. (5.1)
Since F =0, all the terms of expansion (5.1) also must vanish. By using-(4.2), (4.13), and (4.14), we obtain
$ athdz 0, $ (p) -+ 1) dj — 200 (24y — eofy) for L—>co.
Thus, as a result of the fact that the dominant term of expansion (5.1) vanishes, we have
Ay = eofal2.

§6. We can now write the final expressions for ux(I) , uy(l)’, and »®
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' L pcost 6.1)
ut? = 28,f,0"2c0s 20 + 5 &of2® 2 Ky (p/2) — Ko (p/2) cos 260]; ’

p o

L pcosd
u;i) = 2e,fop~*sin 20 + % gofae ® (K (p/2)—Hy{p/2)cosB]sin 8; 6.2)

1 2 pcoso .
o) = —- eofze 2 [Ky(p/2) — K, (p/2) cos 8] sin 6. (6.3)

Considering that 0¥ (1)/ax = -uy‘“, and 8% 1)/a5 =u, 1) and using (3.3), (6.1), and (6.2), we find

L pcose
PO = 2,0~ 15in 6 — g,f,0 2 K1 {p/2)sin 8. 6.4)

Using (2.9) and (6.1)-(6.4), we obtain expressions ¥, uy, Uy, and w for which are equally suitable for the
entire flow region. Using the method of additive composition [4], we find

Yl + E — LE) Y=, + P - '%‘ gof2 sin 26;

Uy (I + Ege — L ERe) ty = g, - Reuld+ —;— gofar—1(cos 8 -- cos 36); (6.5)
uy = (I -+ Ege — I Ege) Uy = ugy - Reui,” (
6.6
— -—i—- &yfar ! (sin 6 — sin 36); )
[~ ([1 -+ ERez —_ IIERez) ® = @ + Re2p() + 2€0f2T_2 sin 29, (6.7)

where ug and Ugy are the x and y components of the vector u,, respectively.

The relationships derived above make it possible, in particular, to answer the question concerning the
asymptotic behavior of the flow velocity and vorticity at large distances downstream from the body under con-
sideration (for small Re values), By using (6.5)-(6.7) and passing to dimensional quantities, we obtain the
following asymptotic expressions:

Voo¥?

A (VoY - ox
V—Vm~lw(‘v‘f“‘2)e ’

)

V¥
Y VaY? T TvX
2~ Bz (S —0)°

for X~ and a fixed value of Y¥X. Here 4 — —;—nl’zsofgavi/zl’gz; B = —1— all?g fav 12y 32,
The author is grateful to B. A. Lugovtsov for the many useful discussions of the problems connected with

this work.
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